
Hierarchical Implicit Neural Emulators
Ruoxi Jiang Xiao Zhang Karan Jakhar Peter Y. Lu

Pedram Hassanzadeh Michael Maire Rebecca Willett

Problem setup

Background. Machine learning (ML)‐based surrogate modeling of dynamical systems has
spurred great interest in recent years due to transformative applications in climate modeling,
molecular dynamics, and plasma physics.

Problem Formulation. For a nonlinear dynamical system, with f encoding the unknown gov‐
erning physics:

∂u

∂t
= f (u, x, t,∇xu,∇2

xu . . . ), u(x, 0) = u0,

we consider its discretized transformation:
dut
dt

= f̃ (ut, t), u0 ∈ Rm. (1)

Here ut represents the discretized state (e.g., fluid velocity on a grid) and f̃ represents the
temporal dynamics. Given N + 1 consecutive observations {u0,u1, . . . ,uN}, our goal is to learn
a neural emulator fθ that approximates the underlying dynamics and predicts future states.

Autoregressive models. We train a transition operator fθ : Rm → Rm to iteratively predict next
state ûn+1 from un:

ûn+1 = fθ(un), (2)

and chain predictions via recursive rollouts:

ûn+k = fθ(fθ(fθ . . . (un))) for k steps.

Challenges and Inspiriation

Explicit methods & Autoregressive Error Accumulation: Classical autoregressive models are
known to suffer from error accumulation, where small deviations amplify over time, leading to
unphysical drift and instability in long‐term rollouts.

We view the conventional autoregressive models as explicit time‐stepping methods:

• For instance, the forward Euler method computes an estimate by:

un+1 ≈ un + ∆tf̃ (un, tn). (3)

• Suffers from instability for larger timesteps (∆t) and in stiff systems.

Inspiration: Implicit methods [1]

• Leverage both current states un and future states un+1 to solve the implicit equation:

un+1 ≈ un + ∆tf̃ (un+1, tn+1) (4)

• Can accommodate much larger time steps.

• Requires iterative root‐finding to solve (4), the Newton method for instance.

Autoregressive Rollout and Residuals Extreme Long‐term Rollout

Ba
se
lin
e

O
ur
s

n = 25 Difference n = 50 Difference n = 75 Difference n = 5000 n = 10K n = 50K n = 100K

Figure 1. In a chaotic, turbulent system, our emulator achieves accurate short‐to‐mid‐term rollout predictions
(left). Even over extremely long sequences (up to 105 emulation steps, right), it captures the physical jet patterns,
while baseline autoregressive methods quickly drift and break down.

Our approach: two-step implicit neural emulator

Our goal is to address the compounding error typically seen in autoregressive models by intro‐
ducing a structure that implicitly reasons about future states. Rather than solving the implicit
equation (4):

• We introduce a latent variable zn+1 = T (un+1), which represents an abstract encoding of
the future state un+1:

ûn+1, ẑn+2 = fθ (un, zn+1) , (5)

where the network is trained to simultaneously predict the next physical state ûn+1 and the
latent representation ẑn+2 that encodes information about a future state.

• The choice of the transformation T : It can be learned. For simplicity, we choose:

z
(l)
n+1 =: DownSample(un+1, rl), (6)

where rl is the downsampling factor.

The Hierarchical Implicit Neural Emulators Framework

The architecture above naturally extends to a hierarchical multi‐step modeling framework in
which predictions are conditioned on multiple latent representations of anticipated future
states. We denote these representations as z(l)

m = T (l)(um), where l indexes increasing lev‐
els of abstraction and we assume um = z(0)

m . The model is then trained to predict across L
hierarchical levels as follows:

ûn+1, ẑ(1)
n+2, . . . , ẑ

(L−1)
n+L = fθ

(
un, z(1)

n+1, . . . , z
(L−1)
n+L−1

)
. (7)

timestep

n n+ 1 n+ 2

timestep

n+ 1 n+ 2 n+ 3

U‐Net

fθz(2)
n+2

z(1)
n+1

un = z(0)
n

ẑ(2)
n+3

ẑ(1)
n+2

ẑ(0)
n+1 = ûn+1

Figure 2. Diagram of our hierarchical implicit neural emulator. Our model conditions on both the past trajectory
un and future latent variables z(1)

n+1, z
(2)
n+2 during training, while using predictions of future states computed in the

previous step of an autoregressive rollout during inference, providing richer context to effectively mitigate error
accumulation for long‐term predictions.

From an encoding standpoint: We process input as a hierarchial sequence.

• Structured: Immediate states like un retain fine‐grained detail, while distant latents such as
z(l)
n+l provide coarse‐scale insights

• Multi‐step: Mirrors the philosophy of implicit methods like Adams–Moulton, with integrating
information from multiple states.

• Multi‐scale: the most adjacent frame includes the finest scale of information, while the most
distant frame contains the most abstract information.

From a decoding standpoint: Distant states become progressively harder to predict.

• Progressive: Encourages a balanced learning process where both local precision and global
structure are prioritized

• Multi‐step: Can be interpreted as executing L steps of iterative refinement, distributed
across temporal frames and abstraction levels without occurring additional computational
cost.

Training objective. Finally, our training loss is designed to supervise both the predicted physical
state and the associated abstract latents:

ℓ(θ) = d(ûn+1(θ),un+1) +
L−1∑
l=1

d(ẑ(l)
n+l(θ), z

(l)
n+l),

where d(·) denotes a distance metric such as l1 or l2 loss for simplicity.

Hierarchical autoregressive rollout. With a small probability p, we sample training instances in
which the model receives a partially missing hierarchy of latent inputs and is tasked to recon‐
struct the missing parts. At the evaluation time, in the hierarchy L = 2, we first input [un,0] to
obtain ẑ(1)

n+1. Then, using the full spatial‐temporal hierarchy states [un, ẑ(1)
n+1], we continue with

autoregressive rollout.

Experiments

Navier‐Stokes. We focus on the dimensionless vorticity‐streamfunction (ω−ψ) formulation of
the incompressible Navier‐Stokes equations in a 2D x− y domain:

∂ω

∂t
+ N (ω, ψ) = 1

Re
∇2ω − χω + f + βv,

where ∇2 = −ω,v = (vx, vy) is velocity with ω = ∇×v. N (ω, ψ) captures non‐linear advection.
The flow is defined by a Reynolds numberRe = 104, constant forcing f , and a Rayleigh drag χ =
0.1. The Coriolis parameter, β = 20, induces zonal jets characteristic of geophysical turbulence,
mimicking the influence of Earth’s rotation on atmospheric and oceanic flows. The domain is
doubly periodic with length L = 2π.
Evaluation: Stability rate. We leverage the system’s conserved energy, defined as E = 1

2(v2
x +

v2
y). A trajectory is deemed stable if its energy remains within 5 standard deviations of this
reference.

Experiments

(a) short‐term estimation

0 25000 50000 75000 100000 125000 150000 175000 200000
Rollout time steps n

0.0

0.2

0.4

0.6

0.8

1.0

St
ab

ilit
y 

Ra
te

(b) long‐term stability rate

100 101 102

Wavenumber
10 10

10 8

10 6

10 4

10 2

En
er

gy
 S

pe
ct

ru
m

Reference truth

(c) Energy Spectrum

L=1

Spatial-Hierarchy

Histo
ry-Hierarchy

3-ste
p Histo

ry

2-ste
p Histo

ry

2-ste
p Ahead

Ours: L
=2

Ours: L
=3

10 3

10 2

Er
ro

r o
f E

ne
rg

y 
Sp

ec
tru

m

5.51e-02

3.70e-023.39e-02

1.75e-021.69e-021.58e-02

1.80e-03

1.02e-03

(d) Energy Spectrum Error

Figure 3. Short‐term vs. long‐term performance. Left: Short‐term accuracy. (a) MSE trend over a 100‐step
autoregressive rollout. Right: long‐term robustness. (b) The stability rate over 10 times the training sequence
length across 100 trials with various initial conditions for 2 × 105 steps. (c,d) Spectrum of long‐term rollout for
normalized data.

10 5 0 5 10
 Zonal Mean

0

2

y

(a) Zonal Mean (b) PCA autocorrelations (c) Error of PCA autocorrleations (d) Short‐term Energy Spectrum

Figure 4. Further investigation of physical property. Left: (a) Time‐averaged zonal mean of vorticity comparing
ground truth (dashed black lines) with emulator runs. Right: Ablation studies on the design of the hierarchy. (b,c)
PCA autocorrelation. (d) Energy spectrum averaging over 200 rollout steps.

1 25 50 75 100

r1 = 1 9.900e‐04 (2.143e‐04) 5.865e‐02 (2.890e‐02) 2.103e‐01 (8.888e‐02) 4.470e‐01 (1.762e‐01) 7.738e‐01 (2.520e‐01)
r1 = 2 1.747e‐03 (3.942e‐04) 1.146e‐01 (6.328e‐02) 3.774e‐01 (1.797e‐01) 7.082e‐01 (3.088e‐01) 1.023e+00 (3.352e‐01)
r1 = 4 7.735e‐04 (1.954e‐04) 5.651e‐02 (3.199e‐02) 1.998e‐01 (1.074e‐01) 4.225e‐01 (1.979e‐01) 7.280e‐01 (2.522e‐01)
r1 = 8 5.248e‐04 (1.148e‐04) 4.024e‐02 (1.920e‐02) 1.606e‐01 (6.496e‐02) 3.731e‐01 (1.509e‐01) 6.547e‐01 (2.440e‐01)
r1 = 16 5.155e‐04 (1.138e‐04) 4.898e‐02 (2.011e‐02) 2.039e‐01 (8.009e‐02) 4.416e‐01 (1.789e‐01) 7.399e‐01 (2.658e‐01)

Table 1. Ablation study on downsampling ratio (r1) for our L = 2 model on 256 × 256 resolution data with jet.
We evaluate model performance by computing roll‐out mean squared error (MSE) for downsampling ratios
r1 = 1, 2, 4, 8, 16, and present the mean (standard deviation) over 100 trials with varied initial conditions.

Method Seconds per iter. 1‐step MSE 25‐step MSE 50‐step MSE Zonal mean error

Baseline: L = 1 0.2067 5.60e−04 (1.15e−04) 8.04e−02 (3.45e−02) 3.12e−01 (1.15e−01) 4.20 (2.36)

Pushforward [2] 0.2834 1.08e−03 (2.26e−04) 9.16e−02 (4.62e−02) 3.19e−01 (1.34e−01) 1.07 (0.44)
Ours: L = 3 0.2204 5.50e‐04 (1.20e‐04) 3.37e‐02(1.41e‐02) 1.40e‐01 (6.16e‐02) 0.63 (0.58)

Table 2. Comparison of training efficiency and multi‐step forecasting errors.

25
6×

25
6,

Je
t u25 û25 û25 − u25 û25 û25 − u25 u50 û50 û50 − u50 û50 û50 − u50

25
6×

25
6,

N
o
Je
t

GT Baseline: L = 1 Ours: L = 3 GT Baseline: L = 1 Ours: L = 3

51
2×

51
2,

Je
t

u50 û50 û50 − u50 û50 û50 − u50

GT Baseline: L = 1 Ours: L = 3

Figure 5. Visualization of rollout estimation across multiple datasets. We apply our approach to three different
flows: (1) Re = 104, 256 × 256 resolution featuring zonal jets, (2) Re = 5 × 103, 256 × 256 resolution without zonal
jets, and (3) Re = 104, 512 × 512 resolution with zonal jets. Our method (L = 3) gives more accurate predictions
with lower associated residuals in all three scenarios.

Acknowledgement and References
RJ, PL, and RW gratefully acknowledge the support of AFOSR FA9550‐18‐1‐0166, the Eric andWendy Schmidt AI in Science Fellowship
program, and the Margot and Tom Pritzker Foundation. RJ, PL, RW, and MM gratefully acknowledge the support of the NSF‐Simons
AI‐Institute for the Sky (SkAI) via grants NSF AST‐2421845 and Simons Foundation MPS‐AI‐00010513. KJ and PH were supported by
NSF RISE‐2425898 and Schmidt Sciences, LLC.

[1] Uri M Ascher, Steven J Ruuth, and Brian TR Wetton. Implicit‐explicit methods for time‐dependent partial differential equations.
SIAM Journal on Numerical Analysis, 1995.

[2] Johannes Brandstetter, Daniel Worrall, and MaxWelling. Message passing neural pde solvers. arXiv preprint arXiv:2202.03376, 2022.

Correspondence to: roxie_jiang@fudan.edu.cn, zhang7@uchicago.edu, willett@uchicago.edu


	References

