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of the system state, e.g. forecasting fluid flow driven by unknown sources or predicting optical signal Full System
propagation without phase measurements.
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While many deep learning methods exist for learning models from partial observations, very few approaches
provide any interpretability. Sparse symbolic system identification methods are both highly interpretable
and provide an excellent physics-informed inductive bias for dynamical systems found in nature, but
cannot handle partially observed systems.
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To accomplish interpretable partially observed system identification, we propose a machine learning Time True w True v
framework that combines an encoder for state reconstruction with a sparse symbolic model. Our tests
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Our proposed machine learning framework consists of: $ 125- { Time Time
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