
We only have data from an observed visible state, which is related to the full system state
by a known projection function. A known aggregation function can reconstruct the full
system state from the visible state and an unknown hidden state.

Goal: Identify the system dynamics .
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Peter Y. Lu, Joan Ariño Bernad, Marin Soljačić

Overview

Problem Formulation

Machine Learning Framework

Acknowledgments

Phase Reconstruction ExperimentPrediction Examples

ODE Identification Experiments PDE Identification Experiments
Identifying the governing equations of a nonlinear dynamical system is key to both understanding the
physical features of the system and constructing an accurate model of the dynamics that generalizes well
beyond the available data.

In many cases, this problem is further compounded by a lack of available data and only partial observations
of the system state, e.g. forecasting fluid flow driven by unknown sources or predicting optical signal
propagation without phase measurements.

While many deep learning methods exist for learning models from partial observations, very few approaches
provide any interpretability. Sparse symbolic system identificationmethods are both highly interpretable
and provide an excellent physics-informed inductive bias for dynamical systems found in nature, but
cannot handle partially observed systems.

To accomplish interpretable partially observed system identification, we propose a machine learning
framework that combines an encoder for state reconstruction with a sparse symbolic model. Our tests
show that this method can successfully reconstruct the full system state and identify the equations of
motion governing the underlying dynamics for a variety of ODE and PDE systems.

Our proposed machine learning framework consists of:

(1) a deep learning encoder, for reconstructing hidden states from partial observations; and

(2) a sparse symbolic model, for learning the explicit symbolic governing equations.

The entire architecture is trained end-to-end by matching the higher-order symbolic time derivatives of
the sparse symbolic model with finite difference estimates from the data.
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