Extracting Interpretable Physical Parameters from Spatiotemporal Systems using Unsupervised Learning

Peter Y. Lu, Samuel Kim, Marin Soljačić March Meeting 2020

Uncontrolled Variables in Dynamics Data

Consider a dataset where uncontrolled variables cause each example to have differing dynamics.

Previous Work: Identifying Parameters

- Previous approaches include sparse identification methods (SINDy).
- Related works include unsupervised learning of object properties.

Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz (2016). *PNAS*, 113(15), 3932-3937.

Samuel Rudy, Alessandro Alla, Steven L. Brunton, J. Nathan Kutz (2019). *SIAM J. Appl. Dyn. Syst.*, 18(2), 643–660.

David Zheng, Vinson Luo, Jiajun Wu, Joshua B. Tenenbaum (2018). UAI 2018 Proceedings, arXiv:1807.09244.

Unsupervised Learning & Interpretability

Goal: Given data with varying dynamics due to uncontrolled variables, extract *interpretable parameters* that characterize the observed dynamics.

- Assume no explicit equation or model.
- Use variational autoencoder (VAE) to produce interpretable latent representations.
- Physics-informed architectures provide inductive bias.

Architecture Overview

- Based on variational autoencoder (VAE): independent latent parameters.
- Encoder extracts latent physical parameters.
- **Decoder** propagates the system forward in time (simulator).

- Common architecture in computer vision tasks.
- Averaging to generalize to inputs of different sizes.
- Latent parameters **z** sampled from learned distribution $N(\mu_z, \sigma_z^2)$.

- Decoder network propagates state $\hat{\mathbf{y}}$ from time $\mathbf{t} \rightarrow \mathbf{t+1}$.
- Latent parameters **z** directly parameterize propagation dynamics.

Simulated Datasets + Noise

1D Nonlinear Schrödinger (NS)

Identifying Relevant Parameters

After training, examine encoded parameter distributions $\mathbf{z} \sim N(\boldsymbol{\mu}_z, \boldsymbol{\sigma}_z^2)$ to identify relevant parameters.

Encoder Parameter Extraction

1D Kuramoto–Sivashinsky (KS)

Encoder Parameter Extraction

1D Nonlinear Schrödinger (NS)

Encoder Parameter Extraction

0.06

0.08 0.10 0.12 0.14

True D

Input Series $\{\mathbf{x}_i\}$

Dynamics Encoder

-0.4

-0.4

-0.2

0.0

True v_x

(f) CD, $\sigma = 0.1$ Noise

0.2

0.4

-0.4

-0.2

0.0

True v_v

0.2

0.4

Decoder Tunable Model

Reasonable prediction performance and good generalization.

Decoder Prediction Examples

Example predictions from each dataset.

Decoder Prediction Performance

Performance comparable to finite-difference method with same space discretization and time step.

igvee Latent Parameters $\mathbf{z}=oldsymbol{\mu}_{\mathtt{z}}+\sigma_{\mathtt{z}}\odotoldsymbol{\epsilon}$

Initial Condition v

VAE Reg. Loss

Propagating Decoder

Target Series {y,

Predicted Propagation $\{\hat{\mathbf{y}}_i\}$

MSE Loss

Summary and Conclusions

- Method achieved successful interpretable parameter extraction on: convection–diffusion, nonlinear Schrödinger, and Kuramoto–Sivashinsky.
- We observed robustness to noise.*
- Future work: Test on experimental datasets and applications, e.g. fluid imaging, chemical/biological systems.

>Unsupervised learning can aid in our understanding of physical systems.

➤We can optimize the trade-off between flexibility and interpretability using physics-informed deep learning architectures.

Code available: <u>https://github.com/peterparity/PDE-VAE-pytorch</u>

Acknowledgments

Funding: MIT, NDSEG Fellowship, DARPA **Discussions:** Rumen Dangovski, Li Jing, Jason Fleischer

Samuel Kim

Marin Soljačić

Raw Parameter Extraction

Latent Parameter 1

Latent Parameter 2

Latent Parameter 3

Latent Parameter 4
Latent Parameter 5

-0.25 0.00 0.25

True v_v

VAE Regularization

 $\mathbb{E}_{p_D(\mathbf{x})}[D_{\mathrm{KL}}(q(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z}))] = D_{\mathrm{KL}}(q(\mathbf{z}, \mathbf{x}) \parallel q(\mathbf{z}) p_D(\mathbf{x})) \quad \mathbf{1} + D_{\mathrm{KL}}(q(\mathbf{z}) \parallel \prod_i q(z_i)) \quad \mathbf{2} + \sum_i D_{\mathrm{KL}}(q(z_i) \parallel p(z_i)) \quad \mathbf{3}$

- 1. Parsimony
- 2. Statistical independence
- 3. Gaussian prior

Data Sparsity

Trained on only 50, 25, or 10 examples from Kuramoto–Sivashinsky dataset.

Evaluation with alternative B.C.s

