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Uncontrolled Variables in Dynamics Data

Consider a dataset where uncontrolled variables cause each example 
to have differing dynamics.

arXiv:1907.06011



Previous Work: Identifying Parameters
• Previous approaches include sparse identification methods (SINDy).
• Related works include unsupervised learning of object properties.

arXiv:1907.06011

Property Vector

Property Vector

Property Vector

New Trajectory for
Object Set

Perception Prediction

Trajectory for
Object Set

…

Unsupervised
Algorithms

Mass

Coefficient of 
Restitution

Charge

Human-interpretable
Properties

Figure 1: Model overview. The unsupervised object property discovery paradigm that the PPN follows extracts
property vectors from samples of object dynamics to accurately predict new trajectories of those same objects. Applying
unsupervised learning methods to the learned vectors allows for the extraction of human-interpretable object properties.

systems. Our proposed system is robust under several
forms of generalization, and we present experiments
demonstrating the ability of our unsupervised approach
to discern interpretable properties even when faced with
different numbers of objects during training and testing
as well as property values in previously unseen ranges.

We evaluate the PPN for two major functionalities: the
accuracy of dynamics prediction for unseen objects and
the interpretability of properties learned by the model. We
show that our model is capable of accurately simulating
the dynamics of complex multi-interaction systems with
unknown property values after only a short observational
period to infer those property values. Furthermore, we
demonstrate that the representations learned by our model
can be easily translated into relevant human-interpretable
properties using entirely unsupervised methods. Addi-
tionally, we use several experiments to show that both the
accuracy of dynamics prediction and interpretability of
properties generalize well to new scenarios with different
numbers and configurations of objects. Ultimately, the
PPN serves as a powerful and general framework for dis-
covering underlying properties of a physical system and
simulating its dynamics.

2 RELATED WORK
Previous methods of modeling intuitive physics have
largely fallen under two broad categories: top-down ap-
proaches, which infer physical parameters for an existing
symbolic physics engine [1, 5, 6, 7, 8, 9], and bottom-
up approaches, which directly predict physical quantities
or future motion given observations [10, 11, 12, 13, 14,
15, 16]. While top-down approaches are able to gener-
alize well to any situation supported by their underlying
physics engines (e.g. different numbers of objects, pre-
viously unseen property values, etc.), they are difficult
to adapt to situations not supported by their underlying
description languages, requiring manual modifications
to support new types of interactions. On the other hand,
bottom-up approaches are often capable of learning the
dynamics of formerly unseen situations without any fur-

ther modification, though they often lack the ability to
generalize in the same manner as top-down approaches.

Recently, a hybrid approach has used neural relation net-
works, a specific instance of the more general class of
graph-based neural networks [17, 18], to attain the gen-
eralization benefits of top-down approaches without re-
quiring an underlying physics engine. Relation networks
rely on the use of a commutative and associative opera-
tion (usually vector addition) to combine pairwise inter-
actions between object state vectors in order to predict
future object states [19]. These networks have demon-
strated success in simulating multiple object dynamics
under interactions including Coulomb charge, object col-
lision (with and without perfect elasticity), and spring
tension [2, 3, 20, 21]. Much like a top-down approach,
relation networks are able to generalize their predictions
of object position and velocity to different numbers of ob-
jects (training on 6 objects and testing on 9, for instance)
without any modification to the network weights; further-
more, they are fully differentiable architectures that can
be trained via gradient descent on a variety of interactions.
Our paper leverages the interaction network in a novel
way, demonstrating for the first time its efficacy as a per-
ception module and as a building block for unsupervised
representation learning.

Additional research has looked at the supervised and un-
supervised learning of latent object properties, attempting
to mirror the inference of object properties that humans
are able to perform in physical environments [1]. Wu et
al. [9] leverages a deep model alongside set physical laws
to estimate properties such as mass, volume, and material
from raw video input. Fraccaro et al. [22] uses a varia-
tional autoencoder to derive the latent state of a single
bouncing ball domain, which they then simulate using
Kalman filtering. Chang et al. [3] demonstrate that their
relation network based physics simulator is also capa-
ble of performing maximum-likelihood inference over a
discrete set of possible property values by comparing sim-
ulation output for each possibility to reality. Our paper
goes one step further by showing that physical proper-

and Appendixes A and B. However, it may be difficult to know
the correct variables a priori. Fortunately, time-delay coordi-
nates may provide useful variables from a time series (9, 12, 38).
The ability to reconstruct sparse attractor dynamics using time-
delay coordinates is demonstrated in SI Appendix, section 4.5
using a single variable of the Lorenz system.
The choice of coordinates and the sparsifying basis are in-

timately related, and the best choice is not always clear. However,
basic knowledge of the physics (e.g., Navier–Stokes equations have
quadratic nonlinearities, and the Schrödinger equation has jxj2 x
terms) may provide a reasonable choice of nonlinear functions and
measurement coordinates. In fact, the sparsity and accuracy of the
proposed sparse identified model may provide valuable diagnostic
information about the correct measurement coordinates and basis
in which to represent the dynamics. Choosing the right coordinates
to simplify dynamics has always been important, as exemplified by
Lagrangian and Hamiltonian mechanics (39). There is still a need
for experts to find and exploit symmetry in the system, and the
proposed methods should be complemented by advanced algo-
rithms in machine learning to extract useful features.

Results
We demonstrate the algorithm on canonical systems*, ranging
from linear and nonlinear oscillators (SI Appendix, section 4.1),
to noisy measurements of the chaotic Lorenz system, to the
unsteady fluid wake behind a cylinder, extending this method to
nonlinear PDEs and high-dimensional data. Finally, we show
that bifurcation parameters may be included in the models,

recovering the parameterized logistic map and the Hopf normal
form from noisy measurements. In each example, we explore the
ability to identify the dynamics from state measurements alone,
without access to derivatives.
It is important to reiterate that the sparse identification

method relies on a fortunate choice of coordinates and function
basis that facilitate sparse representation of the dynamics. In SI
Appendix, Appendix B, we explore the limitations of the method
for examples where these assumptions break down: the Lorenz
system transformed into nonlinear coordinates and the glycolytic
oscillator model (11–13).

Chaotic Lorenz System. As a first example, consider a canonical
model for chaotic dynamics, the Lorenz system (40):

_x= σðy− xÞ, [7a]

_y= xðρ− zÞ− y, [7b]

_z= xy− βz. [7c]

Although these equations give rise to rich and chaotic dynamics
that evolve on an attractor, there are only a few terms in the
right-hand side of the equations. Fig. 1 shows a schematic of how
data are collected for this example, and how sparse dynamics are
identified in a space of possible right-hand-side functions using
convex ℓ1 minimization.
For this example, data are collected for the Lorenz system, and

stacked into two large data matrices X and _X, where each row of X
is a snapshot of the state x in time, and each row of _X is a snapshot

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives _X; the assumption of having _X is relaxed later. Next, a library of nonlinear functions of the states, ΘðXÞ, is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy _X=ΘðXÞΞ. The few entries in the vectors of Ξ, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are σ = 10, β= 8=3, ρ= 28, ðx0, y0, z0ÞT = ð−8,7,27ÞT . The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

*Code is available at faculty.washington.edu/sbrunton/sparsedynamics.zip.

3934 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.

D
ow

nl
oa

de
d 

at
 M

IT
 L

IB
R

AR
IE

S 
on

 F
eb

ru
ar

y 
27

, 2
02

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

654 S. RUDY, A. ALLA, S. L. BRUNTON, AND J. N. KUTZ

Figure 5. Left: dataset for identification of the parametric Navier–Stokes equation (14). Right: coe�cients
for Navier–Stokes equations exhibiting jump in Reynolds number from 100 to 75 at t = 10. This parametric
dependency is illustrated in Figure 1a.

Figure 6. Identified time series for coe�cients for the Navier–Stokes equation. Distinct axes are used to
highlight jump in Reynolds number. Left: no noise. Right: 1% noise.

3.3. Spatially dependent advection-di↵usion equation. The advection-di↵usion equa-
tion is a simple model for the transport of a physical quantity in a velocity field with di↵usion.
Here, we adapt the equation to have a spatially dependent velocity

(15) ut = (c(x)u)x + ✏uxx = c(x)ux + c0(x)u+ ✏uxx

which models transport through a spatially varying vector field due to c = c(x). We solve (15)
on a periodic domain [�L,L] with L = 5 from t = 0 to 5, ✏ = 0.1, and c(x) = �1.5+cos(2⇡x/L)
using the DFT to evaluate spatial derivatives and the SciPy function odeint for temporal
integration with n = 256 and m = 256. See Figure 7 for a numerical solution and coe�cients.
The library consists of powers of u up to cubic, multiplied by derivatives of u up to fourth
order.

Results for the advection-di↵usion equation are shown in Figure 8. In the noise-free and
noisy datasets, both SGTR and group LASSO correctly identify the active terms in the PDE.

3.4. Spatially dependent Kuramoto–Sivashinsky equation. We now test the method on
a Kuramoto–Sivashinsky equation with spatially varying coe�cients

(16) ut = a(x)uux + b(x)uxx + c(x)uxxxx.D
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Unsupervised Learning & Interpretability

• Assume no explicit equation or 
model.
• Use variational autoencoder 

(VAE) to produce interpretable 
latent representations.
• Physics-informed architectures 

provide inductive bias.

Goal: Given data with varying dynamics due to uncontrolled variables, 
extract interpretable parameters that characterize the observed dynamics.

Michela Massi / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

z

arXiv:1907.06011



Architecture Overview

• Based on variational autoencoder (VAE): independent latent parameters.
• Encoder extracts latent physical parameters.
• Decoder propagates the system forward in time (simulator).

Dynamics Encoder

Propagating Decoder

Latent Parameters z = μz + σz⊙ϵ

Input Series {xt}

Target Series {yt}

MSE Loss

VAE Reg. Loss

Predicted Propagation {yt̂}

Initial Condition y0

t
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Dynamics Encoder

Propagating Decoder

Latent Parameters z = μz + σz⊙ϵ

Input Series {xt}

Target Series {yt}

MSE Loss

VAE Reg. Loss

Predicted Propagation {yt̂}

Initial Condition y0

t

Encoder Architecture

• Common architecture in computer vision tasks.
• Averaging to generalize to inputs of different sizes.
• Latent parameters z sampled from learned distribution N(μz, σz

2).

σ2(t, r)

σzσ ϵ ∼ N(0, 1)

μ(t, r)

μz
Latent

Parameters
z

IVW Average

Dilated Convolutions

Input Series {xt}

+

⊙

t
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Dynamics Encoder

Propagating Decoder

Latent Parameters z = μz + σz⊙ϵ

Input Series {xt}

Target Series {yt}

MSE Loss

VAE Reg. Loss

Predicted Propagation {yt̂}

Initial Condition y0

t

Decoder Architecture

• Decoder network propagates state ŷ from time t → t+1.
• Latent parameters z directly parameterize propagation dynamics.

ŷt ŷt+1

+

Dynamic Convolutions

Latent-to-Kernel Network

Kernels &
Biases

Hidden Layer

Skip Connection

z
Recurrent Propagation (Unrolled)

...

Predicted Propagation {yt̂}

ŷ2 ŷ3ŷ1y0

t
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Simulated Datasets + Noise
1D Nonlinear Schrödinger (NS)

2D Convection–Diffusion (CD)

1D Kuramoto–Sivashinsky (KS)

5

III. SIMULATED PDE DATASETS

To study the ability of our architecture to perform
parameter extraction, we generate simulated datasets
of spatiotemporal systems that have spatially uniform,
time-independent local dynamics in a box with periodic
boundary conditions, i.e. we consider PDEs of the form

@~u(t,~r)

@t
= F (~u,r~u, ~u2, (~u ·r)~u, . . .), (9)

where F is a general space- and time-independent, non-
linear local operator acting on ~u. This allows us to design
an optimized, physics-informed model architecture. We
test our model on a variety of spatiotemporal systems by
creating the following three datasets that cover linear,
nonlinear, and chaotic dynamics as well as giving both
1D and 2D examples. For details on the generation of
the simulated datasets, see Appendix C.

A. 1D Kuramoto–Sivashinsky

The Kuramoto–Sivashinsky equation

@u

@t
= �� @4xu� @2xu� u @xu (10)

is nonlinear scalar wave equation with a viscosity damp-
ing parameter �. This is a key example of a chaotic PDE
[32] due to the instability caused by the negative second
derivative term and was originally derived to model lami-
nar flame fronts [33, 34]. The 1D Kuramoto–Sivashinsky
dataset has a training set with 5,000 examples and a test
set with 10,000 examples.

B. 1D Nonlinear Schrödinger

The nonlinear Schrödinger equation

i
@ 

@t
= �1

2
@2x +  | |2  (11)

is a complex scalar wave equation with a cubic nonlin-
earity controlled by the coe�cient . In our data, we
represent  = u1 + iu2 as a real two-component vec-
tor ~u = (u1, u2). This equation can be used to model
the evolution of wave-packets in nonlinear optics and is
known to exhibit soliton solutions [35]. The 1D nonlinear
Schrödinger dataset has a training set with 5,000 exam-
ples and a test set with 10,000 examples.

C. 2D Convection–Di↵usion

The 2D convection–di↵usion equation

@u

@t
= Dr2u� ~v ·ru (12)

TABLE I. R2 correlation coe�cients from linear fits of the
relevant latent parameters (Figure 2) with the ground truth
physical parameters for each dataset—both with and without
added noise. For the three-parameter convection–di↵usion
dataset, the di↵usion constant D is fit with a corresponding
extracted latent parameter, while the drift velocity compo-
nents vx, vy are fit with a corresponding two-dimensional sub-
space of the latent parameters due to the inherent rotational
symmetry.

Dataset Param. No Noise � = 0.1 Noise

Kuramoto–Sivashinsky � 0.993 0.995
Nonlinear Schrödinger  0.997 0.998
Convection–Di↵usion D 0.963 0.959
Convection–Di↵usion vx 0.997 0.994
Convection–Di↵usion vy 0.998 0.996

TABLE II. R2 correlation coe�cients from individual linear
fits of the 2D convection–di↵usion dataset parameters with
each relevant latent parameter (LP). High correlations are
bolded, emphasizing the interpretability of the learned latent
parameters as either corresponding to the di↵usion constant
D or the drift velocity components vx, vy. The drift veloc-
ity is matched with two latent parameters that form a two-
dimensional latent subspace corresponding to the velocity vec-
tor.

No Noise � = 0.1 Noise

Param. LP 1 LP 2 LP 5 LP 1 LP 2 LP 3

D 0.963 0.000 0.003 0.003 0.959 0.001
vx 0.000 0.205 0.766 0.395 0.006 0.554
vy 0.001 0.818 0.205 0.568 0.000 0.473

is a linear scalar wave equation consisting of a di↵usion
term with constant D and a velocity-dependent convec-
tion term with velocity field ~v. The equation describes
a di↵using quantity that is also a↵ected by the flow or
drift of the system, e.g. dye di↵using in a moving fluid.
We consider the case of a constant velocity field. The
2D convection–di↵usion dataset has a training set with
1,000 examples and a test set with 1,000 examples.

IV. NUMERICAL EXPERIMENTS

We perform numerical experiments by training the
model on both the original noiseless datasets and
the datasets with added � = 0.1 Gaussian noise—
corresponding to 10% noise relative to the initial con-
ditions. Then, we evaluate the trained models on the
full size noiseless test set examples (no cropping). By
also training on noisy datasets, we test the robustness of
our method and show the e↵ect of noise on the extracted
parameters and prediction performance.
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Identifying
Relevant Parameters
After training, examine encoded parameter distributions z ~ N(μz, σz

2) to 
identify relevant parameters.

arXiv:1907.06011
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Input Series {xt}

Target Series {yt}
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VAE Reg. Loss

Predicted Propagation {yt̂}

Initial Condition y0

t



Encoder 
Parameter Extraction
1D Kuramoto–Sivashinsky (KS)
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Parameter Extraction
2D Convection–Diffusion (CD)

arXiv:1907.06011

Dynamics Encoder

Propagating Decoder

Latent Parameters z = μz + σz⊙ϵ

Input Series {xt}

Target Series {yt}

MSE Loss

VAE Reg. Loss

Predicted Propagation {yt̂}

Initial Condition y0

t



Decoder
Tunable Model
Reasonable prediction performance and good generalization.
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Decoder
Prediction Examples
Example predictions from each dataset.
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Decoder 
Prediction Performance
Performance comparable to finite-difference method with same 
space discretization and time step.
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Summary and Conclusions
• Method achieved successful interpretable parameter extraction on:

convection–diffusion, nonlinear Schrödinger, and Kuramoto–Sivashinsky.

• We observed robustness to noise.*

• Future work:  Test on experimental datasets and applications,
e.g. fluid imaging, chemical/biological systems.

ØUnsupervised learning can aid in our understanding of physical systems.

ØWe can optimize the trade-off between flexibility and interpretability 
using physics-informed deep learning architectures.

ØCode available: https://github.com/peterparity/PDE-VAE-pytorch

arXiv:1907.06011
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Raw Parameter Extraction
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VAE Regularization

1. Parsimony

2. Statistical independence

3. Gaussian prior

12

by decomposing the data-averaged VAE regularization
term in the following way [22, 49]:

EpD(x)[DKL(q(z|x) k p(z))] =

DKL(q(z,x) k q(z) pD(x)) (D1)

+DKL(q(z) k
Y

i

q(zi)) (D2)

+
X

i

DKL(q(zi) k p(zi)), (D3)

where pD(x) is the data distribution, p(z) =
Q

i p(zi) are
the standard normal priors for the latent parameters z =
(z1, z2, . . . , zi, . . .), q(z|x) is the output distribution of the
dynamics encoder, q(z,x) = q(z|x) pD(x) is the joint dis-
tribution of the encoded latent parameters and the data,
and q(z) =

R
dx q(z,x) and q(zi) =

R
dx

Q
j 6=i dzj q(z,x)

are the marginal distributions of the latent parameters z
or a single latent parameter zi, respectively. The three
terms in this decomposition correspond directly to the
three e↵ects: the first term (D1) represents the mutual
information between the latent parameters and the data;
the second term (D2) represents the total correlation be-
tween the latent parameters; and the third term (D3)
consists of KL divergences between the marginal distri-
bution for individual latent parameters and the standard
normal prior.

By minimizing the mutual information between the
latent space and the data (D1) as well as correlations
among the latent parameters (D2), the model is com-
pelled to learn a latent space with minimal information
and independent parameters, i.e. the model will use a
minimal set of independent relevant latent parameters to
capture only the necessary information for better predic-
tion performance. The rest of the unused latent param-
eters will collapse to the prior. Furthermore, by match-
ing the marginal latent parameter distributions q(zi) to
the standard normal priors p(zi) (D3), the VAE regular-
izer encourages a linear relationship between the relevant
learned latent parameters and the true physical parame-
ters if the physical parameters are normally distributed
in the data. Even if a physical parameter zphys is non-
normally distributed, the VAE regularization will still
compel the model to learn a monotonic relationship [50]
between zphys and a corresponding latent parameter z
given by

zphys = ±CDFp(zphys) � CDF�1
p(z)(z), (D4)

where CDFp(·) is the cumulative distribution function for
the probability distribution p(·).

Although this decomposition is suggestive of the ef-
fects of VAE regularization, the study of the performance
of VAE-based models and the relative importance and
model dependence of each of these e↵ects is still very
much ongoing [21, 22, 41–43, 51]. While training our
model, we empirically observe that the latent parame-
ters retain their independence and that their marginal

distributions match the standard normal priors, so only
an increase in information stored in the latent space is
traded for better prediction performance. We believe we
can attribute this to the physics-informed inductive bi-
ases present in our architecture, which allows our model
to achieve its best performance using a minimal set of in-
dependent and normally distributed latent parameters.

Appendix E: Raw Parameter Extraction Results

We can explicitly see the relevant and collapsed la-
tent parameters in the raw data by plotting the latent
parameters versus the true physical parameters (Figure
10). The latent parameters that show a correlation with
the true physical parameters also have small variances �2

z
and correspond to the identified relevant latent param-
eters (Figure 2), while the remaining latent parameters
have collapsed to the prior. Note that for the collapsed
parameters, we see variances �2

z that are less than one—
the value expected for parameters which have collapsed
to the prior distribution N (0, 1). This is because, to av-
erage over systems of di↵erent sizes, the model makes the
assumption that patches separated far in space or time
provide independent estimates of the extracted parame-
ters and computes the total variance accordingly. This
assumption is reasonable for relevant parameters but will
artificially lower the extracted variances for collapsed pa-
rameters. During testing, we choose to evaluate on the
full system size resulting in this artifact. If we were to
evaluate on smaller patches that match the size of the
crops used during training, we would indeed see that the
collapsed parameters have �2

z = 1.
We also note that, for the model trained on the 2D

convection–di↵usion dataset, the latent parameters asso-
ciated with the drift velocity ~v are not aligned with the
vx, vy velocity components. This is an expected result
due to the inherent ambiguity of choosing a coordinate
basis—introduced by the rotational symmetry of the ve-
locity vector—and makes judging the extraction perfor-
mance more di�cult. Instead of examining one latent pa-
rameter at a time, we must consider the two-dimensional
latent subspace associated with the velocity vector. Tak-
ing the two relevant latent parameters that are correlated
with the drift velocity (Table II), we can perform a multi-
variate linear regression of the velocity components vx, vy
in this two-dimensional latent subspace to verify that the
model has indeed learned a simple rotated representation
of the velocity vector (Figure 5).

Appendix F: Alternative Boundary Conditions

The fully convolutional structure of the propagating
decoder (PD) means that we are able to evaluate our
model on arbitrary geometries and boundary conditions.
By training on small crops and evaluating on the full
size examples in the test set (Section IV), we have al-
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Data Sparsity

Trained on only 50, 25, or 10 examples from Kuramoto–Sivashinsky dataset.
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Evaluation with alternative B.C.s

Periodic Boundaries

Dirichlet Boundaries
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